

Online Interactive Perception of Articulated Objects with Multi-Level Recursive Estimation Based on Task-Specific Priors

Presenter: Gu-Cheol Jeong

09/15/2022

Motivation : manipulate in unknown environment

To perform successful manipulation:

- **1. Perceiving degree of freedom of unknown objects in unstructured environment - Joint type, and joint axis**
- **2. Online interactive perception (IP) algorithm**

Related work - what is interactive perception?

Idea that perception and interaction are inextricably linked

- **= Leverage action in perception and perception in action**
	- **- Perception is facilitated by interaction with the environment**
	- **- Physical interaction -- create → rich sensory signal**
	- **- Regularity in combined space of sensory data and action parameters facilitates the prediction and interpretation of the signal**

Fig. 4. Paper categorization based on application areas. Papers that address multiple application areas lie on the boundary between those applications, e.g. Kaelbling and Lozano-Pénez I811, Schiebener et al. 1571

Motivation and Main Problem

Online IP method is important because

- **1. Existing IP method are offline algorithm → not inform the ongoing action**
- **2. Offline setting leads to failure cases → online method can address**
- **3. Offline methods are not probabilistic** \rightarrow not include an estimate of model uncertainty

Related work : Articulated Model Estimation

- 1. Yan and Pollefeys : segmentation + joint detection
	- use structure from motion -> estimate 3D feature trajectory
	- spectral clustering -> identify rigid bodies
- 2. Ross et al. : Yan work + maximum likelihood estimation to identify rigid bodies Cons : Need accumulated large motion data + offline algorithm
- 3. Sturm et al.: a probabilistic approach to joint classification and characterization Pros: uncertainty estimates about joint type + real-time. Cons: x detecting and tracking unknown rigid body.(need to know rigid bodies)
- 4. Huang et al.: offline method to extract 3-D models of articulated rigid object using IP Cons: require multiple object views to generate first full point cloud of an objects
- 5. Katz et al. [14]: RGB-based, offline solution for the perception of three-dimensional, rigid kinematic structure. Pros: cost-effective + accurate + computationally efficient Cons: offline. \leftarrow limitation(newly appeared objects)

Recursive Estimation - Bayesian Filter

When state and observation are stochastic processes, recursive estimation can be solved by using recursive Bayesian filtering.

Filter estimate : posterior
$$
p(x_t|z_{1:t}, u_{1:t})
$$

\nstate Measurement $p(x_{t-1}|z_{1:t-1}, u_{1:t-1})$

Integration for the prediction

=> increase the complexity and computational load Solution

- 1. Monte Carlo integration = Particle Filter
- 2. Gaussian distribution = Kalman Filter

Recursive State Estimation - Kalman Filter

- ❖ Process and measurement model : linear functions with Gaussian noise
- ❖ Initial State is normally distributed, ---> Kalman Filter **State** Measurement model $\sqrt{z_t}=h(x_t)+\delta_t$ action $\sqrt{\frac{1}{z_t}}$ Gaussian Noise
- ❖ Process and measurement model : Nonlinear function but linearizable (Taylor series or Jacobian) ---> Extended Kalman Filter(EKF)

$$
f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots.
$$

EKF is used in this paper for estimation

Figure 5. Taylor Series

Recursive Estimation of Feature Motion

first level : motion of a set of point features in an RGB-D sensor state : $\mathbf{x}_t^{fm} \in \mathbb{R}^{3N}$ (fm = feature motion)

N : tracked point feature

3N = 3D coordinate * tracked point feature

measurement: $z^{fm}_{t} \in \mathbb{R}^{2N}$

measurements are obtained by tracking the features in the RGB sensor

Two priors: 1) motion continuity, 2) physics of rigid bodies

Recursive Estimation of Feature Motion

- **1) Prediction in feature motion estimation current location --- predict → next feature location current location --- predict → estimated rigid body velocities**
- Motion Continuity **2) Measurement update in feature motion estimation predicted 3D feature location --- project ---> image plane(2D) ---> Kanade-Lucas_Tomasi tracking algorithm(refine 2D locations, update the filter state) ---> estimates of the next feature location**
- **3) Feature initialization and maintenance**

reject the features a) features over the course of 15 frames, b) features liying close to depth continuities in the RGB-D image, c) surface of the robot arm.

Feature Motion

Recursive Bayesian Estimation of Rigid Body Motion

1) Prediction in Single Rigid Body Motion Estimation Use three different process models in parallel a) current pose + velocity -- predict → next pose

b) special case : stop movings -- set \rightarrow **current vel = 0**

c) kinematic model -- predict → alternative next pose & velocity

- **2) Measurement Update in Single Rigid Body Motion Estimation input : 3D feature location(lower level), output : future locations of feature**
- **3) Recursive Bayesian Estimation of Multi-Body Motion group features,**

Cannot predict features(error<=2cm) ---RANSAC → find a rigid body transformation

f_min > 15 features, create a new RBF

Recursive Estimation of Kinematic Model

motion of rigid body -- estimate and tracks \rightarrow the kinematic model of the scene -- prediction \rightarrow **next state of the next-lower level(feedback) KInematic State**

Assume four states

1) Prismatic joint

$$
\mathsf{z}^{joint,p}_t= \binom{q^p\cdot \hat{\bm{o}}^p}{\bm{0}_3} + \delta^{joint}_t
$$

2) Revolute joint

$$
z_t^{joint,r} = \begin{pmatrix} t^r \\ q^r \cdot \hat{\boldsymbol{\partial}}^r \end{pmatrix} + \delta_t^{joint}
$$

 $z_t^{joint,rigid} = \mathbf{0}_6 + \delta_t^{joint}$

Azimuth

3) Rigid connection

: No relative motion

4) Disconnected

Experimental Setup

- ❖ Evaluate the performance of the online IP algorithm.
	- : Place artificial markers for the ground truth of the joint
- ❖ Test the algorithm in scenarios were offline algorithms fail
- ❖ Use of the online abilities of the algorithm to control the motion of a robot
- \triangleleft Algorithm tracks N = 150 features at a frame rate of 15 frames / sec

Experimental Evaluation

- ❖ Book experiment
- ❖ Umbrella experiment

❖ PUMA 560 experiment

❖ Human Head experiment

Failure case of Previous Offline Algorithms Solved with Online IP

- ❖ Disappearing Features
	- detects moving bodies
	- incrementally assigns new features
- ❖ Appearing Objects
	- not be shown at the beginning.
	- once object is visible, new features are detected
- ❖ Identical initial and final configuration
	- model remains converged after the object returns

Controlling Interaction with Online IP

- ❖ Two experiments with two objects each, Repeated ten times
- Goal:

task 1) obtain a kinematic model with a specified uncertainty task 2) move one of the joints to a specific configuration

- **Result**
	- 1) online IP can be used to monitor and control interactions 2) possible to adjust the robot's action based on a desired uncertainty bound for the accuracy during the estimation of kinematic model.

3) Online estimation of joint values can be used to monitor and attain manipulation goal

Critique / Limitations / Open Issues

- **1. There must be motion for the method to work**
- **2. the limitations of feature tracking relatively stable lighting conditions and bounded object acceleration.**
- **3. Computational limitation**
	- **algorithm must perform at reasonably high frame rates**
	- **track 150 features at 15 Hz**
- **4. Only handles four kinematic relationships**
	- **revolute, prismatic, rigidly connected, and disconnected.**

Extended Readings

[1] H. Li, "A Brief Tutorial On Recursive Estimation With Examples From Intelligent Vehicle Applications (Part I): Basic Spirit And Utilities," p. 20.

[2]J. Bohg *et al.*, "Interactive Perception: Leveraging Action in Perception and Perception in Action," *IEEE Trans. Robot.*, vol. 33, no. 6, pp. 1273–1291, Dec. 2017, doi: [10.1109/TRO.2017.2721939](https://doi.org/10.1109/TRO.2017.2721939).

Summary

- ❖ Present an online algorithm for the interactive perception of articulated bodies
- ❖ Input : RGB-D stream

Output : kinematic model of observed scene

- ❖ Three interconnected recursive estimation filters to solve the perceptual problem
	- 1) Feature motion

2) Rigid motion

- 3) Kinematic model of moving objects
- ❖ Recursive estimation filters are bidirectional
- ❖ Result : Highly robust algorithm